CHAPTER #02

INDETERMINATE FORMS

CONICS

EXAMPLE #01 Evaluate $\lim_{x \to 0} \frac{\log(1-x) + 1 + \sin x - \cos x}{x \tan^2 x}$ SOLUTION $\lim_{x \to 0} \frac{\log(1-x) + 1 + \sin x - \cos x}{x \tan^2 x} = \lim_{x \to 0} \frac{\log(1-x) + 1 + \sin x - \cos x}{x \frac{\tan^2 x}{x^2} \cdot x^2}$ $= \lim_{x \to 0} \frac{\log(1-x) + 1 + \sin x - \cos x}{-\frac{1}{(1-x)} + \cos x + \sin x}$ $= \lim_{x \to 0} \frac{-\frac{1}{(1-x)} + \cos x + \sin x}{3x^2}$ $= \lim_{x \to 0} \frac{-\frac{1}{(1-x)^2} - \sin x + \cos x}{6x}$ $\therefore \lim_{x \to 0} \frac{\log(1-x) + 1 + \sin x - \cos x}{x \tan^2 x} = -\frac{1}{2} \qquad = \lim_{x \to 0} \frac{-\frac{2}{(1-x)^3} - \cos x - \sin x}{6}$ $=\frac{-2-1}{6}=-\frac{1}{2}.$

 $\lim_{x \to 0} \frac{a \sin x - b x + c x^2 + x^3}{2x^2 \log(1+x) - 2x^3 + x^4} = \frac{3}{40}$, then find the the the values of If the constants a,b,c Solution The given limit is of the form $\frac{0}{0}$. And the limit is $\frac{3}{40}$ $\frac{3}{40} = \frac{1}{2} \lim_{x \to 0} \frac{a \cos x - b + 2cx + 3x^2}{2x \log(1+x) + \frac{x^2}{1+x} - 3x^2 + 2x^3}$ Now, as x tends to 0, the denominator tends to zero and the given limit is $\frac{3}{40}$, the numerator must tend to zero. *i.e.*, a-b=0. ____(1)

 $\therefore \frac{3}{40} = \frac{1}{2} \lim_{x \to 0} \frac{-a \sin x + 2c + 6x}{2 \log(1 + x) + \frac{2x}{1 + x} + \frac{(2x + x^2)}{(1 + x)^2} - 6x + 6x^2}$ (by L'Hospital's Rule1)

Again, as x tends to 0, the denominator tends to zero and the given limit is $\frac{3}{40}$, the numerator must tend to zero.

i.e.,
$$c = 0$$
.

$$\therefore \frac{3}{40} = \frac{1}{2} \lim_{x \to 0} \frac{-a \sin x + 6x}{2 \log(1+x) + \frac{2x}{1+x} + \frac{(2x+x^2)}{(1+x)^2} - 6x + 6x^2} \quad (\text{form } \frac{0}{0})$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{-a \cos x + 6}{\frac{2}{1+x} + \frac{2}{(1+x)^2} + \frac{2}{(1+x)^3} - 6 + 12x}$$
 (by L'Hospital's Rule1)

Again, as x tends to 0, the denominator tends to zero and the given limit is $\frac{3}{40}$, the numerator must tend to zero.

i.e.,
$$a = 6$$
.

And by equation (1), b = a. Therefore, a = 6, b = 6, c = 0.

EXAMPLE #03
Evaluate
$$\lim_{x \to 0} \frac{\log(\log(1-3x^2))}{\log(\log(\cos 2x))}$$
.
Solution
Let $\tilde{L} = \lim_{x \to 0} \frac{\log(\log(1-3x^2))}{\log(\log(\cos 2x))}$. Then the given limit is of the
indeterminate form $\frac{\pi}{\infty}$
 $= \lim_{x \to 0} \frac{\frac{1}{\log(1-3x^2)} \cdot \frac{1}{(1-3x^2)} \cdot (-6x)}{\frac{1}{\log(\cos 2x)} \cdot \frac{1}{(\cos 2x)} \cdot (-2\sin 2x)}$ (
 $= 3\lim_{x \to 0} \frac{\log(\cos 2x)}{\log(1-3x^2)} \cdot \frac{\cos 2x}{1-3x^2} \cdot \frac{x}{\sin 2x}$
 $= \frac{3}{2} \lim_{x \to 0} \frac{\log(\cos 2x)}{\log(1-3x^2)} \cdot \lim_{x \to 0} \frac{\cos 2x}{1-3x^2} \cdot \lim_{x \to 0} \frac{2x}{\sin 2x}$

$$=\frac{3}{2}\lim_{x\to 0}\frac{\log(\cos 2x)}{\log(1-3x^2)}\cdot\frac{1}{1-0}$$

$$=\frac{3}{2}\lim_{x\to 0}\frac{\log(\cos 2x)}{\log(1-3x^2)}$$

$$=\frac{3}{2}\lim_{x\to 0}\frac{\frac{1}{\cos 2x}\cdot(-2\sin 2x)}{\frac{1}{1-3x^2}(-6x)}$$
 (1)

$$= \frac{3}{2} \lim_{x \to 0} \frac{1 - 3x^2}{\cos 2x} \cdot \frac{\sin 2x}{3x}$$

$$=\frac{\cancel{3}}{2}\lim_{x\to 0}\frac{1-3x^2}{\cos 2x}\quad \lim_{x\to 0}\frac{\sin 2x}{\cancel{3}x}=1.$$

Evaluate
$$\lim_{x \to a} (x^2 - a^2) \tan(\frac{\pi x}{2a}), a \neq 0$$

Solution Let $L = \lim_{x \to a} (x^2 - a^2) \tan(\frac{\pi x}{2a})$. Then the given limit is of the indeterminate form $0 \times \infty$

$$L = \lim_{x \to a} \frac{x^2 - a^2}{\cot\left(\frac{\pi x}{2a}\right)}$$
$$= \lim_{x \to a} \frac{2x}{-\frac{\pi}{2a}\csc^2\left(\frac{\pi x}{2a}\right)}$$
$$= -\frac{4a}{\pi} \cdot \frac{a}{\csc^2\frac{\pi}{2}}$$
$$4a^2$$

 π

.

.

EXAMPLE #05
Evaluate
$$\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\log x} \right]$$

Solution Let $L = \lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\log x} \right]$. Then given limit is of the form $\infty -\infty$
 $L = \lim_{x \to 1} \frac{x \log x - x + 1}{(x-1) \log x}$ (form $\frac{0}{0}$)
 $= \lim_{x \to 1} \frac{x \log x - x + 1}{x \log x - \log x}$ (form $\frac{0}{0}$)
 $= \lim_{x \to 1} \frac{\log x}{1 + \log x - \frac{1}{x}}$ (form $\frac{0}{0}$)
 $= \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}}$ (byL'Hospital's Rule 1)
 $= \frac{1}{2}$.

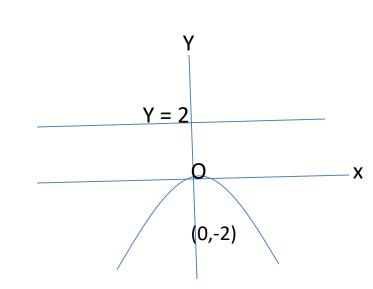
EXAMPLE #06
Evaluate
$$\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos^2 x}$$

Solution Let $L = \lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos^2 x}$. Then given limit is of the form 0⁰
Taking log on both sides, we get
 $\log L = \lim_{x \to \frac{\pi}{2}} \cos^2 x \log(\cos x)$ (form $0 \times \infty$)
 $= \lim_{x \to \frac{\pi}{2}} \frac{\log(\cos x)}{\sec^2 x}$ (form $\frac{\pi}{\infty}$)
 $= \lim_{x \to \frac{\pi}{2}} \frac{-\tan x}{2 \sec^2 x \tan x}$
 $= 0 \implies L = e^0 = 1$.

Find the focus and directrix of the parabola $x^2 = -8y$. Then sketch it.

Solution

Comparing with $x^2 = -4py$, we get $4p = 8 \Rightarrow p = 2$ Focus : (0, -p) = (0, -2)Directrix : $y = p \Rightarrow y = 2$



Find semi major axis , semi minor axis, centre to focus distance, foci, directrix , vertices, eccentricity and centre for $169x^2 + 25y^2 = 4225$

Given that Solution $169x^2 + 25y^2 = 4225$ Dividing by 4225 both sides, we get $\frac{x^2}{25} + \frac{y^2}{169} = 1$ Semi major axis: a = 13Semi minor axis : b = 5 $c = \sqrt{a^2 - b^2} = \sqrt{169 - 25} = \sqrt{144} = 12$ Foci : $(0, \pm c) = (0, \pm 12)$ Vertices : $(0, \pm a) = (0, \pm 13)$ Centre : (0,0)Eccentricity = c a = 12/13Directrix $y = a = 169 12 = \pm 14.08$

Find the equation of hyperbola centre at origin given that foci : $(0, \pm \sqrt{2})$, Asymptote : $y = \pm x$

Solution

Foci :
$$(0, \pm \sqrt{2}) = (0, \pm c) \Rightarrow c = \sqrt{2}$$

Asymptote : $y = \pm \frac{a}{b}x$
Given that $y = \pm x \Rightarrow a \ b = 1 \Rightarrow a = b$
We know that $c^2 = a^2 + b^2 \Rightarrow 2 = 2a^2 \Rightarrow a = 1$
Hence required equation of hyperbola is
 $x^2 - y^2 = 1$

(i)

Use discriminant $B^2 - 4AC$ to decide whether the following equations represents parabola.ellipse or hyperbola

(i)
$$2x^2 - 8xy + 8y^2 + 2x + 2y = 0$$

(ii) $x^2 + 4xy + 4y^2 - 3x = 6$
(iii) $xy + y^2 - 3x = 5$
(iv) $3x^2 - 18xy + 27y^2 - 5x + 7y = -4$
Solution The quadratic curve represented by equation
 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is
(i) a parabola if $B^2 - 4AC = 0$
(ii) a nellipse if $B^2 - 4AC > 0$
(iii) a hyperbola if $B^2 - 4AC > 0$
(i) Comparing eq $2x^2 - 8xy + 8y^2 + 2x + 2y = 0$ with $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
we get $A = 2$, $B = -8$, $C = 8$
 $B^2 - 4AC = 0$, Hence it represents parabola
(ii) Comparing eq $x^2 + 4xy + 4y^2 - 3x = 6$ with $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, we get $A = 1$, $B = 4$, $C = 4$. Therefore, $B^2 - 4AC = 0$. Hence it represents parabola
(iii) Comparing eq $xy + y^2 - 3x = 5$ with $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, we get $A = 0$, $B = 1$, $C = 1$. Therefore, $B^2 - 4AC > 0$. Hence it represents hyperbola.
(iv) Comparing eq $3x^2 - 18xy + 27y^2 - 5x + 7y = -4$ with $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, $A = 3$, $B = -18$, $C = 27$. Therefore, $B^2 - 4AC = 0$. Hence it represents parabola